Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of Single-Crystalline PMN-PT and PIN-PMN-PT in High-Performance Pyroelectric Detectors

Identifieur interne : 000618 ( Chine/Analysis ); précédent : 000617; suivant : 000619

Application of Single-Crystalline PMN-PT and PIN-PMN-PT in High-Performance Pyroelectric Detectors

Auteurs : RBID : Pascal:12-0406409

Descripteurs français

English descriptors

Abstract

The suitability for use in pyroelectric detectors of single-crystalline doped and undoped lead indium niobate-lead magnesium niobate-lead titanate was tested and compared with high-quality Mn-doped lead magnesium niobate- lead titanate and standard lithium tantalate. Pyroelectric and dielectric measurements confirmed an increased processing and operating temperature range because of the higher phase transitions of lead indium niobate-lead magnesium niobate-lead titanate. Pyroelectric coefficients of 705 to 770 μC/m2.K were obtained with doped and undoped lead indium niobate-lead magnesium niobate-lead titanate, which are about 70% to 80% of the pyroelectric coefficient of lead magnesium niobate-lead titanate but 4 times higher than standard lithium tantalate. Manganese doping has been proved as a solution to decrease the dielectric loss of lead magnesium niobate-lead titanate and it also works well for lead indium niobate-lead magnesium niobate-lead titanate. An outstanding specific detectivity D* of about 1.1 . 109 cm.Hz1/2/W was achieved at a frequency of 2 Hz for Mn-doped lead magnesium niobate-based detectors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0406409

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Application of Single-Crystalline PMN-PT and PIN-PMN-PT in High-Performance Pyroelectric Detectors</title>
<author>
<name>PING YU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>InfraTec GmbH</s1>
<s2>Dresden</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Dresden</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YADONG JI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>InfraTec GmbH</s1>
<s2>Dresden</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Dresden</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Neumann, Norbert" uniqKey="Neumann N">Norbert Neumann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>InfraTec GmbH</s1>
<s2>Dresden</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Dresden</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Sang Goo" uniqKey="Lee S">Sang-Goo Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>IBULe Photonics Co.</s1>
<s2>Incheon</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>IBULe Photonics Co.</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HASOU LUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Es Souni, Mohammed" uniqKey="Es Souni M">Mohammed Es-Souni</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Institute of Materials & Surface Technology, University of Applied Science</s1>
<s2>Kiel</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Schleswig-Holstein</region>
<settlement type="city">Kiel</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0406409</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0406409 INIST</idno>
<idno type="RBID">Pascal:12-0406409</idno>
<idno type="wicri:Area/Main/Corpus">001720</idno>
<idno type="wicri:Area/Main/Repository">002019</idno>
<idno type="wicri:Area/Chine/Extraction">000618</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0885-3010</idno>
<title level="j" type="abbreviated">IEEE trans. ultrason. ferroelectr. freq. control</title>
<title level="j" type="main">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dielectric losses</term>
<term>Dielectric materials</term>
<term>Doping</term>
<term>Experimental study</term>
<term>High performance</term>
<term>Lead Niobates</term>
<term>Lead indium niobate</term>
<term>Lead magnesium niobate</term>
<term>Lead titanates</term>
<term>Lithium tantalates</term>
<term>Magnesium Niobates</term>
<term>Manganese additions</term>
<term>Measurement sensor</term>
<term>Monocrystals</term>
<term>Phase transformations</term>
<term>Piezoelectric transducers</term>
<term>Pyroelectric detectors</term>
<term>Pyroelectricity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transducteur piézoélectrique</term>
<term>Pyroélectricité</term>
<term>Monocristal</term>
<term>Magnésium Niobate</term>
<term>Titanate de plomb</term>
<term>Dopage</term>
<term>Plomb Niobate</term>
<term>Tantalate de lithium</term>
<term>Diélectrique</term>
<term>Perte diélectrique</term>
<term>Haute performance</term>
<term>Addition manganèse</term>
<term>Transformation phase</term>
<term>Détecteur pyroélectrique</term>
<term>Capteur mesure</term>
<term>Etude expérimentale</term>
<term>Magnoniobate de plomb</term>
<term>Indium niobate de plomb</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The suitability for use in pyroelectric detectors of single-crystalline doped and undoped lead indium niobate-lead magnesium niobate-lead titanate was tested and compared with high-quality Mn-doped lead magnesium niobate- lead titanate and standard lithium tantalate. Pyroelectric and dielectric measurements confirmed an increased processing and operating temperature range because of the higher phase transitions of lead indium niobate-lead magnesium niobate-lead titanate. Pyroelectric coefficients of 705 to 770 μC/m
<sup>2</sup>
.K were obtained with doped and undoped lead indium niobate-lead magnesium niobate-lead titanate, which are about 70% to 80% of the pyroelectric coefficient of lead magnesium niobate-lead titanate but 4 times higher than standard lithium tantalate. Manganese doping has been proved as a solution to decrease the dielectric loss of lead magnesium niobate-lead titanate and it also works well for lead indium niobate-lead magnesium niobate-lead titanate. An outstanding specific detectivity D
<sup>*</sup>
of about 1.1 . 109 cm.Hz
<sup>1/2</sup>
/W was achieved at a frequency of 2 Hz for Mn-doped lead magnesium niobate-based detectors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0885-3010</s0>
</fA01>
<fA02 i1="01">
<s0>ITUCER</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. ultrason. ferroelectr. freq. control</s0>
</fA03>
<fA05>
<s2>59</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Application of Single-Crystalline PMN-PT and PIN-PMN-PT in High-Performance Pyroelectric Detectors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PING YU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YADONG JI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NEUMANN (Norbert)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEE (Sang-Goo)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HASOU LUO</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ES-SOUNI (Mohammed)</s1>
</fA11>
<fA14 i1="01">
<s1>InfraTec GmbH</s1>
<s2>Dresden</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>IBULe Photonics Co.</s1>
<s2>Incheon</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Materials & Surface Technology, University of Applied Science</s1>
<s2>Kiel</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1983-1989</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222G9</s2>
<s5>354000508392330220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0406409</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The suitability for use in pyroelectric detectors of single-crystalline doped and undoped lead indium niobate-lead magnesium niobate-lead titanate was tested and compared with high-quality Mn-doped lead magnesium niobate- lead titanate and standard lithium tantalate. Pyroelectric and dielectric measurements confirmed an increased processing and operating temperature range because of the higher phase transitions of lead indium niobate-lead magnesium niobate-lead titanate. Pyroelectric coefficients of 705 to 770 μC/m
<sup>2</sup>
.K were obtained with doped and undoped lead indium niobate-lead magnesium niobate-lead titanate, which are about 70% to 80% of the pyroelectric coefficient of lead magnesium niobate-lead titanate but 4 times higher than standard lithium tantalate. Manganese doping has been proved as a solution to decrease the dielectric loss of lead magnesium niobate-lead titanate and it also works well for lead indium niobate-lead magnesium niobate-lead titanate. An outstanding specific detectivity D
<sup>*</sup>
of about 1.1 . 109 cm.Hz
<sup>1/2</sup>
/W was achieved at a frequency of 2 Hz for Mn-doped lead magnesium niobate-based detectors.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70G70</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Transducteur piézoélectrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Piezoelectric transducers</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Pyroélectricité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Pyroelectricity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Magnésium Niobate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Magnesium Niobates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Titanate de plomb</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Lead titanates</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Doping</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Doping</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Plomb Niobate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Lead Niobates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Tantalate de lithium</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Lithium tantalates</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Diélectrique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Dielectric materials</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dieléctrico</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Perte diélectrique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Dielectric losses</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Haute performance</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>High performance</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Alto rendimiento</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Addition manganèse</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Manganese additions</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Transformation phase</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Phase transformations</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Détecteur pyroélectrique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Pyroelectric detectors</s0>
<s5>33</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Capteur mesure</s0>
<s5>34</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Measurement sensor</s0>
<s5>34</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Captador medida</s0>
<s5>34</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>35</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>35</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Magnoniobate de plomb</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Lead magnesium niobate</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="SPA">
<s0>Niobato de Magnesio y plomo</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Indium niobate de plomb</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Lead indium niobate</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="18" i2="3" l="SPA">
<s0>Niobato de indio y plomo</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>317</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>IEEE International Symposium on Applications of Ferroelectrics (ISAF)</s1>
<s2>20</s2>
<s3>Vancouver, British Columbia CAN</s3>
<s4>2011-07-20</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000618 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000618 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0406409
   |texte=   Application of Single-Crystalline PMN-PT and PIN-PMN-PT in High-Performance Pyroelectric Detectors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024